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Scientific Progress

Abstract

Fluid-structure interaction (FSI) is known to be one of the most challenging classes of problems in scientific computing. With 

creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling. Multiscale 

methods, which now play an important role in computational mathematics, can also increase the accuracy and efficiency of the 

computer modeling techniques. The main objective of this project is to develop new multiscale methods specifically targeting 

FSI computations. Some of these methods are multiscale in the way the time-integration technique is performed (i.e. temporally 

multiscale), some are multiscale in the way the spatial discretization is done (i.e. spatially multiscale), and some are in the 

context of the sequential-coupling techniques that we are developing in this project. The objectives of the project include 

determining the range of applicability of these multiscale and sequential-coupling techniques and generating an engineer’s 

guide to multiscale FSI computations.

Objective

Fluid-structure interaction (FSI) continues to be one of the most challenging classes of problems in scientific computing. 

Creative methods for coupling the fluid and structure parts are essential in increasing the scope and efficiency of FSI modeling. 

Multiscale methods will also continue to play an important role in computational mathematics and will increase the accuracy 

and efficiency of the computer modeling techniques. In multiscale computations, time-step size restrictions, imposed by 

numerical stability and accuracy considerations, pose a challenge. These restrictions depend on grid refinement, and also fluid 

and structure might have different time-step size requirements. Reducing the time-step size (or increasing the time-integration 

power) everywhere is the easiest way but not computationally efficient. Our objective is to develop new multiscale methods 

specifically targeting FSI computations. Some of these methods are multiscale in selecting the time-integration and time-step 

size (i.e. temporally multiscale), some are multiscale in selecting the grid refinement and interpolation power of the functions 

used (i.e. spatially multiscale), and some are in the context of the sequential-coupling techniques that we are developing in this 

project. Our objective includes determining the range of applicability of these multiscale and sequential-coupling techniques and 

generating an engineer’s guide to multiscale FSI computations.

Approach

In the sequentially-coupled FSI approach, we first have a fully-coupled FSI computation with baseline spatial and temporal 

accuracy. The baseline grid refinement level, interpolation power of the finite element functions used, time-step size and the 

time-integration power determines that accuracy. Using the baseline structural deformation as given, we improve the spatial 

and temporal accuracy of the fluid mechanics part by carrying out fluid-only computations with better grid refinement, more 

interpolation power for the finite element functions, smaller time-step size and more time-integration power. In this way, we can, 

for example, compute the unsteady wake flow more accurately. Similarly, by using the baseline fluid mechanics forces at the 

fluid-structure interface as given, we can improve the spatial and temporal accuracy of the structural mechanics part by carrying 

out structure-only computations. In this way, we can, for example, compute the stress concentration at a given point more 

accurately. Although it will be more challenging, we also plan to use these multiscale spatial and temporal accuracy 

enhancements in the context of fully-coupled FSI computations. One of the ways to do that, for example, is to use, in the 

context of a fully-coupled FSI computation, more time-integration power in the fluid part or in certain zones of the fluid part. 

Increasing the time-integration power will increase the range of time-step sizes that can be used while maintaining the stability 

and accuracy of the computations.

Scientific Barriers

Data exchange in multiscale computations will be one of the main challenges, especially in the context of a fully-coupled FSI 

computation. Projecting solutions between grids with different refinement levels, especially from a coarse grid to a fine grid, is 

always challenging, and the way we address that challenge will quite often be problem-specific. Coupling between zones with 

different time-step sizes or different time-integration powers is another challenge that needs to be addressed. 

Sequentially-coupled FSI computing is rather intensive in I/O access and that needs be addressed in a parallel computing 

environment.

Significance

Accurate and robust FSI modeling is key to a realistic simulation that takes into account the true nature of a challenging 

problem in computational science and engineering. Multiscale techniques, in general, give us more accuracy and efficiency. 

The sequential-coupling techniques, which will be limited to certain classes of FSI problems, gives us more computational 

efficiency and more flexibility. With that flexibility and a multiscale approach, we can increase the spatial and temporal accuracy 

of the results in an efficient way. Multiscale and sequential-coupling FSI computer modeling techniques that can increase the 

accuracy and efficiency of the computations in a parallel-computing setting will help computational scientists and engineers 

bring solutions to complex, real-world problems, including those relevant to the US Army and the Department of Defense. We 

expect that the type of problems that will benefit from such powerful and practical FSI modeling techniques will include the 

flapping wing aerodynamics of Micro Air Vehicles (MAV), aerodynamics of Unmanned Air Vehicles (UAV), 

Micro-Electro-Mechanical Systems (MEMS), aerodynamics of parachutes, and inflatable structures subjected to wind loads.

Accomplishments



Space-Time Turbulence model

A turbulence model has been developed in conjunction with our space-time finite element method, namely the DSD/SST 

method. This is the space-time version of the residual-based variational multiscale (VMS) method. We call this new technique 

DSD/SST-VMST (i.e. the version with the variational multiscale turbulence model). We call the original version DSD/SST-SUPS 

(i.e. the version with the SUPG and PSPG stabilization). We also derived an alternative form of DSD/SST-VMST, which has the 

advection term in the non-conservative form. The set of DSD/SST-VMST technique we developed include using different 

stabilization parameters for the "LSIC" term (i.e. the stabilization based on least-squares on incompressibility constraint). The 

method belongs to the class of the large eddy simulation (LES) methods. LES methods require some minimum resolution. The 

required resolution is usually high near the boundary layer. We introduced various alternative versions of the formulation, in 

terms of how the LSIC term is defined and also in terms of how the advective term is treated. The evaluation of these 

alternative versions requires patience and diversity in the problems computed.

Test computation with a rigid airfoil and unsteady flow field

We designed this special test problem, and generated a special mesh, for first evaluating the accuracy of the DSD/SST-VMST 

method and comparing it to DSD/SST-SUPS formulation. This required writing a special mesh generation program. We used a 

64-618 airfoil, with a core rectangular mesh region. We tested both linear finite elements in space and quadratic B-splines in 

space. We compared the results to experimental data. We showed that VMST performs better, but SUPS, our standard 

formulation, is also performing at a reasonable level. The details can be found in [1].

Test computation with an airfoil attached to a torsion spring and unsteady flow field

We used the same airfoil and mesh to test how the DSD/SST-VMST and DSD/SST-SUPS techniques perform in a simple FSI 

problem. The airfoil is attached to a torsion spring. More details on the problem set up can be found in [1]. The core rectangular 

mesh rotates with the airfoil to maintain a constant mesh resolution near the airfoil. The computations show that the 

DSD/SST-VMST method gives more accurate results (with less damping) compared to the DSD/SST-SUPS method. More 

details can be found in [1].

Time approximation with NURBS

We developed a method to approximate motions with temporal NURBS basis functions. This method is a core technique to be 

used with the techniques highlighted below.

A. Surface motion and deformation representation with NURBS in time

We are now using NURBS basis functions in time to represent the motion and deformation of surfces. This gives us a more 

accurate, smoother, and more efficient representation in time. To make the pressure continuous in time, position vectors of the 

surfaces need to be represented with cubic NURBS functions in time, so that their second derivatives in time (i.e. the 

acceleration), which balances the pressure in the momentum equation, are continuous in time. That is what we implemented.

B. Mesh representation with cubic NURBS in time

Time dependent mesh is represented with temporal NURBS basis function. This allows us to do mesh computations (by solving 

the equations governing the mesh motion) with longer time in between. This has been successfully tested on 3D computation of 

the aerodynamics of flapping wings. We need to have the temporal order of NURBS basis functions used in mesh motion 

match the temporal order used in the surface motion representation. For that reason, for the mesh motion we implemented also 

cubic NURBS functions in time.

C. Remeshing technique with the mesh representation described above

We proposed the following remeshing technique. Prior to remeshing we perform multiple knot insertions at the instant in time 

where we want to remesh. Then the basis set will be interpolatory there.  With that, the basis functions on two sides of that 

point in time are separate, i.e. that point is a patch boundary. This has been successfully tested on 3D computation of the 

aerodynamics of flapping wings. This also has been implemented for cubic NURBS functions in time.

Collaborations and Leveraged Funding

The FSI simulations we carried out for our NASA parachute project helped us to better understand the numerical challenges 

involved in fluid-structure coupling and multiscale computations. We collaborated with Dr. Yuri Bazilevs from University of 

California, San Diego, who is an expert in NURBS-based spatial interpolation. We also learned from our NSF project, which 

was on aerodynamic modeling of the flapping locust wings and which gave us a test platform for our multiscale space-time 

techniques.

Conclusions

Fluid-structure interaction (FSI) modeling is now an important part of computational engineering and science, with a wide class 

of applications, including those very relevant to the Army and Department of Defense. We have formulated effective multiscale 

and sequential coupling techniques for FSI computations that, for certain classes of problems, will increase the efficiency 



without compromising the accuracy.

If we cannot resolve the separation point correctly, the stress, which the structure sees, cannot be represented correctly. Higher 

Reynolds numbers with curved geometry is a difficult case to resolve the separation point for. It is a candidate for the failure 

cases of the sequentially-coupled FSI technique. Also, accurate temporal representation of the moving and deformation 

surfaces is important for the overall accuracy of the computations, and for that we use higher-order NURBS functions in time.

A. We concluded that we can compute the aerodynamic forces acting on curved geometries with reasonable accuracy even 

with relatively coarse meshes if we use a good turbulent model (DSD/SST-VMST), which we developed and described above. 

The mesh is relatively coarse, however a good boundary layer mesh is required depending on the Reynolds number. We tested 

different versions of the "LSIC" stabilization, which makes a difference in the solution. We observed that the way advection 

terms are treated makes a difference, and we are still testing different versions based on that, something that takes significant 

effort, patience, and a systematic way of looking at the different combinations that can be used.

B. Clearly we need sufficiently higher order functions in time for accurate and smooth representation of the moving and 

deforming surfaces, at least cubic functions. This is important to keep the fluid pressure continuous and avoid jumps in the 

forces acting on moving surfaces.

C. Using higher-order NURBS functions in time in representing the mesh motion and in dealing with remeshing also provided 

robustness and efficiency to our mesh update methods.

Technology Transfer

The computational technology of using NURBS in time approximation, particularly the special techniques described in Items B 

and C, can be directly used in Army applications requiring aerodynamics or hydrodynamics computations with moving objects. 

While we tested and demonstrated these techniques in the context of a space-time finite element formulation, they can also be 

used in different moving-grid contexts, such as ALE finite element or finite volume computations, which are probably more 

commonly used techniques by the Army research community.

[1] K. Takizawa and T.E. Tezduyar, "Space-Time Fluid-Structure Interaction Methods", Mathematical Models and Methods in 

Applied Sciences, 22, 1230001 (2012).
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